A Protocol for an Asymmetric Synthesis of γ -Amino Acids

Leleti Rajender Reddy,* Kapa Prasad, and Mahavir Prashad

Chemical and Analytical Development, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey 07936, United States

Supporting Information

ABSTRACT: A new and practical method for the asymmetric synthesis of γ -amino acids from β , γ -butenolides by an in situ esterification, condensation, and reduction in a one-pot procedure is described. This method is quite general for the preparation of both enantiomers of aryl or aliphatic γ -amino acids in high yields. These γ -amino-acid derivatives were also shown to be versatile synthetic intermediates for further transformations by their conversion to γ -lactams, δ -amino alcohols, and hydrolysis products in high yields with no racemization.

INTRODUCTION

Enantiomerically enriched γ -amino acids (Scheme 1) are valuable synthons for the synthesis of γ -lactams, δ -amino alcohols, and α -substituted pyrrolidines. These building blocks are routinely utilized for the synthesis of a wide variety of bioactive natural products, peptido mimetics,^{1,2} and other pharmaceutical compounds.³ The asymmetric synthesis of γ -amino acids continues to be a fundamental challenge, and significant efforts have been made in this area.⁴

The commercially available chiral *N-tert*-butanesulfinamides have been widely used as highly efficient auxiliaries in the synthesis of a variety of optically active amines by virtue of their excellent diastereocontrol and mild conditions for their cleavage.^{5,6} Recently, we reported⁷ an elegant method for the asymmetric synthesis of α -amino acids by a highly regio- and diastereoselective reduction of *N-tert*-butanesulfinyl ketimine esters. Further, we focused on the asymmetric synthesis of γ -amino acids and reasoned that a direct method to access enantioenriched γ -amino acids would be in situ esterification, condensation, and asymmetric reduction of β , γ -butenolides (3), which has not been described to the best of our knowledge (Scheme 2).^{5,6} Herein, we report the results obtained in this research.

Table 1. Optimization of Reaction Conditions for the Reduction a

"Reaction was conducted on a 1.0 mmol scale of 6a, unless otherwise specified. ^bConversion and diastereoselectivity were determined by crude ¹H NMR analysis.

RESULTS AND DISCUSSION

The choice of using $\beta_{,\gamma}$ -butenolides (3) as starting materials to produce the corresponding ketimine esters is a novel option we investigated in the present study. As expected, the treatment of readily available $\beta_{,\gamma}$ -butenolide **3a** with (*S*)-*N*-tert-butanesulfinamide (**4**) (1.1 equiv) in the presence of Ti(OEt)₄ (2.0 equiv)⁸ and EtOH (1.05 equiv) in THF at 40 °C produced *N*-tertbutanesulfinyl ketimine ester (**6a**)⁹ in 91% yield. Encouraged by

 Received:
 June 11, 2012

 Published:
 June 29, 2012

Table 2. Asymmetric Synthesis of γ -Amino Acids^{*a*}

	$R \xrightarrow{0} 0 + 0^{S_{NH_2}}$	Ti(OEt) ₄ , EtOH, THF 40 °C, 2 d Followed by L-Selectride		
	R = alkyl, aryl	–78 °C, 6h	5 0 dr∶>98∶2	
entry	substrate	product	yield	$dr^{[b]}$
1	MeO-CI-O-O	Hụ Śco Neo OEt	89	98 :2
	3 a	5a		
2	0,00		91	98 :2
	30	50		
3	67.00 30		90	98 :2
4	Me C C Co		95	98 :2
5	s,,,,o,,o 3e		88	98 :2
6	Me_{0}_⊂0 3f	HŅ ^{rš} o Me 5f	94	98 :2
7°	Me CI Co-O	HN ^{NSS} O Me	88	98 :2
8 ^[c]	30 Me_0_0 36	Enantiomer of 5d $HN^{S_{S_0}}$ $ME \rightarrow 0Et$ Enantiomer of 56	95	98 :2
	31	Enantiomer of 51		

^{*a*}Reaction conditions 3 (2.0 mmol), 4 (2.2 mmol), EtOH (2.1 mmol), Ti(OEt)₄ (4.0 mmol) in THF at 40 °C for 2 days, followed by L-Selectride (2.4 mmol) at -78 °C for 6 h, unless otherwise specified. ^{*b*}The diastereoselectivity was determined by ¹H NMR analysis. The " \geq 98:2" dr denotes that signals for only one diastereomer were observed. ^{*c*}(R_S)-(4) is used.

this result, and with **6a** in hand, we explored the asymmetric reduction.

The reaction of *N*-tert-butanesulfinyl ketimine esters (*S*)-6a (1 equiv) with LiBHEt₃ (1.1 equiv, slow addition by syringe pump for 1 h) at -78 °C in THF for 6 h produced a mixture of γ -amino-acid derivative 5a and γ -lactam derivative 8a in a 60:40 ratio (Table 1, entry 1) in high yield (90%). Interestingly, we found that both products are formed in a high diastereomeric ratio (dr \geq 98:2). Encouraged by this result, we investigated different reaction conditions to get a single product. Reduction with L-Selectride provided a similar result as did LiBHEt₃ (65:35 ratio of 5a and 8a, Table 1, entry 2). We were pleased to find that the use of Ti(OEt)₄ (1.1 equiv) and L-Selectride (1.2 equiv)

at -78 °C in THF for 6 h selectively gave only the γ -aminoacid derivative **5a** in 94% yield with high a diastereomeric ratio (dr \geq 98:2) (Table 1, entry 3).

These interesting results allowed us to develop the novel methodology for γ -amino acids from β , γ -butenolides in a one-pot procedure. Thus, β , γ -butenolide **3a** with **4** in the presence of Ti(OEt)₄ (2.0 equiv) and EtOH (1.05 equiv) in THF at 40 °C for 2 days, followed by addition of L-Selectride (1.2 equiv) at -78 °C, stirred for 6 h, produced the γ -amino-acid derivative **5a** (Table 2, entry 1) in excellent yield (89%) and a high diastereomeric ratio (dr \geq 98:2). The diastereoselectivity of the reaction was determined to be \geq 98: 2 by ¹H NMR analysis of the crude product. Encouraged by these results, we turned our attention to

other substituted aromatic β_{γ} -butenolides such as **3b**-**3d**. They reacted smoothly under optimal conditions to afford the corresponding γ -amino-acid derivatives **5b**-**5d** (Table 2, entries 2-4, respectively) in high yields (90-95%) with high diastereomeric ratios (dr \geq 98:2). Similarly, the hetero aromatic **3e** was reacted with 4 to produce the γ -amino-acid derivative 5e (Table 2, entry 4) in good yield (88%) and with excellent diastereoselectivity (dr \geq 98:2). In the same way, the reaction of aliphatic α -angelic lactone (3f) gave the γ -amino-acid derivative 5f (Table 2, entry 5) in high yield (94%) with a high diastereomeric ratio $(dr \ge 98:2)$. Noticeably, the reaction of 3d and 3h with (*R*)-4 under optimal conditions produced the corresponding γ -aminoacid derivatives ent-5d and ent-5h (Table 2, entries 7 and 8) in 88% and 95% yield, respectively, with high diastereomeric ratios $(dr \ge 98:2)$. The structure and absolute stereochemistry of $(R_{S_2}S)$ -5d were confirmed by single-crystal X-ray diffraction analysis (see the Supporting Information).

A possible mechanism for this reaction is depicted in Scheme 3. In the first step, $\beta_i \gamma$ -butenolide 3 reacts with EtOH in the presence

of Ti(OEt)₄ to form the γ -keto ester 7, which in turn reacts with 4 to form imine 6. The diastereoselective reduction of imine 6 with L-Selectride produces the γ -amino-acid derivative 5. The stereochemical model, TS1, explains the observed stereoselectivity of the product [($S_{Sr}R$)-5]. The poorly coordinating and rapidly reacting L-Selectride was posed to attack the electrophilic carbon atom in a sterically controlled fashion via an open transition state. Hence, delivery of the hydride would occur from the same face as the sulfur lone pair to give the ($S_{Sr}R$) diastereomer (TS1).

A key feature of this methodology is the versatility of the γ -amino-acid derivatives **5** in subsequent transformations. Selective cleavage of the sulfinyl group can be accomplished under different reaction conditions to obtain different products in high yields with no loss of stereochemical purity (Scheme 4). The selective cleavage of the ester group of **5** can be achieved with 3 N LiOH in THF/water at 0 °C for 1 h in quantitative yield, without racemization. In addition, straightforward conversion of γ -amino-acid derivatives **5** to δ -amino alcohols **12** can be achieved with NaBH₄.

CONCLUSIONS

In conclusion, we have described a new and practical method for asymmetric synthesis of γ -amino acids from β , γ -butenolide by esterification, condensation, and reduction in a one-pot operation. This method is quite general for the preparation of enantiomers of either aryl or aliphatic γ -amino acids in good yields with high diastereoselectivity. These γ -amino-acid derivatives are versatile synthetic intermediates for further transformations.

EXPERIMENTAL SECTION

General Information. All the reactions were performed under dry nitrogen gas in glassware that was flame dried and equipped with a magnetic stirring bar. Thin layer chromatography (TLC) was performed using silica gel 60 F254 precoated plates (0.25 mm). Flash chromatography was performed using silica gel (40 μ m particle size). All compounds were judged pure by TLC analysis (single spot, two-solvent systems) using a UV lamp or PMA for detection purposes. ¹H and ¹³C NMR spectra were recorded on a FT-NMR spectrometer at 500 and 125 MHz, respectively. High-resolution mass spectroscopy (HRMS) was carried out in the electrospray mode on a premiere time of flight mass spectrometer. The reaction temperatures refer to internal reaction temperatures.

General Procedure (GP1) for the Synthesis of γ **-Amino Acids 5.** To a 100 mL, three-necked, round-bottomed flask were added $\beta_i \gamma$ -butenolide 3 (2.0 mmol), THF (20 mL), EtOH (2.0 mmol), *tert*-butanesulfinamide 4 (2.2 mmol), and Ti(OEt)₄ (4.0 mmol) in a nitrogen atmosphere. The reaction mixture was then heated at reflux at 40 °C for 2 days. After completion, the mixture was allowed to cool to -78 °C, and L-Selectride (2.4 mmol, 1.0 M solution in THF solution) was added (by syringe pump for 1 h). After being stirred for 6 h at -78 °C, the reaction mixture was quenched with a saturated NaHCO₃ solution (20 mL) and extracted with ethyl acetate (2 × 25 mL). The combined organic layer was washed with water and dried under vacuum to give the crude product. It was purified by column chromatography (silica gel, ethyl acetate/hexane) to produce the pure γ -amino acid **5**.

(*R*)-Ethyl 4-((*S*)-1,1-Dimethylethylsulfinamido)-4-(4-methoxyphenyl)butanoate 5a. Following the general procedure (GP1), the reaction of 5-(4-methoxyphenyl)furan-2(3*H*)-one 3a (380 mg, 2.0 mmol) with (*S*)-tert-butanesulfinamide (268 mg, 2.2 mmol) gave 605 mg (89%) of pure (*R*)-ethyl 4-((*S*)-1,1-dimethylethylsulfinamido)-4-(4-methoxyphenyl)butanoate 5a as a light yellow solid. Mp: 80–81 °C. ¹H NMR (501 MHz, CDCl₃): δ 7.19–7.23 (m, 2H), 6.84–6.89 (m, 2H), 4.34–4.41 (m, 1H), 4.05–4.12 (m, 2H), 3.80 (s, 3H), 3.71 (d, *J* = 2.52 Hz, 1H), 2.19–2.32 (m, 2H), 2.01–2.16 (m, 2H), 1.23 (t, *J* = 7.06 Hz, 3H), 1.18 (s, 9H). ¹³C NMR (125 MHz,

CDCl₃): δ 175.2, 159.2, 133.0, 128.7, 113.9, 60.5, 58.1, 55.2, 33.3, 30.8, 22.5, 14.1. HRMS (EI): calcd for C₁₇H₂₈NO₄S [M + H], 342.1739; found, 342.1736.

(*R*)-Ethyl 4-((*S*)-1,1-Dimethylethylsulfinamido)-4-phenylbutanoate 5b. Following the general procedure (GP1), the reaction of 5-phenylfuran-2(3*H*)-one 3b (320 mg, 2.0 mmol) with (*S*)-tertbutanesulfinamide (268 mg, 2.2 mmol) gave 568 mg (91%) of pure (*R*)-ethyl 4-((*S*)-1,1-dimethylethylsulfinamido)-4-phenylbutanoate 5b as a viscous liquid. ¹H NMR (501 MHz, CDCl₃): δ 77.19–7.43 (m, 5H), 4.36–4.53 (m, 1H), 3.98–4.17 (m, 2H), 3.85 (d, *J* = 2.84 Hz, 1H), 2.22–2.39 (m, 2H), 2.05–2.20 (m, 2H), 1.22 (t, *J* = 7.09 Hz, 3H), 1.18 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 173.2, 141.4, 126.5, 127.4, 60.5, 58.8, 55.5, 33.3, 30.8, 22.6, 14.1. HRMS (EI): calcd for C₁₆H₂₆NO₃S [M + H], 312.1633; found, 312.1635.

(*R*)-Ethyl 4-((*S*)-1,1-Dimethylethylsulfinamido)-4-(naphthalen-2-yl)butanoate 5c. Following the general procedure (GP1), the reaction of 5-(naphthalen-2-yl)furan-2(3*H*)-one 3c (420 mg, 2.0 mmol) with (*S*)-*tert*-butanesulfinamide (268 mg, 2.2 mmol) gave 650 mg (90%) of pure (*R*)-ethyl 4-((*S*)-1,1-dimethylethylsulfinamido)-4-(naphthalen-2-yl)butanoate 5c as a white solid. Mp: 78–79 °C. ¹H NMR (401 MHz, CDCl₃): δ 7.67–7.89 (m, 4H), 7.36–7.53 (m, 3H), 4.55–4.64 (m, 1H), 3.94–4.14 (m, 3H), 2.10–2.44 (s and t, 12H). ¹³C NMR (125 MHz, CDCl₃): δ 173.3, 138.5, 133.2, 133.1, 128.6, 127.9, 127.7, 127.1, 126.3, 126.1, 124.9, 60.6, 59.6, 55.6, 33.0, 30.9, 22.6, 14.1. HRMS (EI): calcd for C₂₀H₂₈NO₃S [M + H], 362.1790; found, 362.1788.

(*R*)-Ethyl 4-((*S*)-1,1-Dimethylethylsulfinamido)-4-(4-methylphenyl)butanoate 5d. Following the general procedure (GP1), the reaction of 5-(4-methylphenyl)furan-2(3*H*)-one 3d (348 mg, 2.0 mmol) with (*S*)-*tert*-butanesulfinamide (268 mg, 2.2 mmol) gave 618 mg (95%) of pure (*R*)-ethyl 4-((*S*)-1,1-dimethylethylsulfinamido)-4-(4-methylphenyl)butanoate 5d as a viscous liquid. ¹H NMR (401 MHz, CDCl₃): δ 7.16 (q, *J* = 8.08 Hz, 4H), 4.29–4.47 (m, 1H), 4.09 (q, *J* = 7.07 Hz, 2H), 3.75 (d, *J* = 2.53 Hz, 1H), 2.34 (s, 3H), 2.17–2.32 (m, 2H), 1.96–2.17 (m, 2H), 1.23 (t, *J* = 7.06 Hz, 3H), 1.19 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 173.2, 138.1, 137.4, 129.2, 127.4, 60.6, 58.4, 33.3, 30.7, 22.6, 21.1, 14.1. HRMS (EI): calcd for C₁₇H₂₈NO₃S [M + H], 326.1790; found, 326.1794.

(*R*)-Ethyl 4-((*S*)-1,1-Dimethylethylsulfinamido)-4-(thiophen-2-yl)butanoate 5e. Following the general procedure (GP1), the reaction of 5-(thiophen-2-yl)furan-2(3*H*)-one 3e (332 mg, 2.0 mmol) with (*S*)-*tert*-butanesulfinamide (268 mg, 2.2 mmol) gave 558 mg (88%) of pure (*R*)-ethyl 4-((*S*)-1,1-dimethylethylsulfinamido)-4-(thiophen-2-yl)butanoate 5e as a viscous liquid. ¹H NMR (401 MHz, CDCl₃): δ 7.30 (dd, *J* = 5.05, 3.03 Hz, 1H), 7.18 (d, *J* = 2.02 Hz, 1H), 7.02 (dd, *J* = 5.05, 1.26 Hz, 1H), 4.52–4.59 (m, 1H), 4.09 (q, *J* = 7.16 Hz, 2H), 3.95 (d, *J* = 3.54 Hz, 1H), 2.27–2.39 (m, 2H), 2.09–2.20 (m, 2H), 1.23 (t, *J* = 7.20 Hz, 3H), 1.20 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 173.2, 142.5, 126.2, 126.1, 122.4, 60.5, 55.5, 54.7, 32.4, 30.6, 22.6, 14.1. HRMS (EI): calcd for C₁₄H₂₄NO₃S₂ [M + H], 318.1198; found, 318.1195.

(*S*)-Ethyl 4-((*S*)-1,1-Dimethylethylsulfinamido)pentanoate 5f. Following the general procedure (GP1), the reaction of 5-methylfuran-2(3*H*)-one 3f (196 mg, 2.0 mmol) with (*S*)-*tert*-butanesulfinamide (268 mg, 2.2 mmol) gave 468 mg (94%) of (*S*)-ethyl 4-((*S*)-1,1dimethylethylsulfinamido)pentanoate 5f as a viscous liquid. ¹H NMR (401 MHz, CDCl₃): δ 4.06–4.19 (m, 2H), 3.30–3.44 (m, 1H), 2.95 (d, *J* = 7.57 Hz, 1H), 2.38 (t, *J* = 7.41 Hz, 2H), 1.72–1.89 (m, 2H), 1.31 (d, *J* = 6.31 Hz, 3H), 1.26 (t, *J* = 7.25 Hz, 3H), 1.21 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 173.2, 60.3, 55.7, 52.4, 32.9, 30.7, 23.3, 22.5, 14.1. HRMS (EI): calcd for C₁₁H₂₄NO₃S [M + H], 250.1477; found, 250.1475.

(S)-Ethyl 4-((*R*)-1,1-Dimethylethylsulfinamido)-4-(4-methylphenyl)butanoate *ent*-5d. Following the general procedure (GP1), the reaction of 5-(4-methylphenyl)furan-2(3*H*)-one 3d (349 mg, 2.0 mmol) with (*R*)-*tert*-butanesulfinamide (268 mg, 2.2 mmol) gave 601 mg (88%) of pure (*S*)-ethyl 4-((*R*)-1,1-dimethylethylsulfinamido)-4-(4-methylphenyl)butanoate *ent*-5d as a white solid. Mp: 85–86 °C. ¹H NMR (401 MHz, CDCl₃): δ 7.16 (q, *J* = 8.17 Hz, 4H), 4.36–4.43 (m, 1H), 4.09 (q, *J* = 7.24 Hz, 2H), 3.77 (d, *J* = 2.78 Hz, 1H), 2.34 (s, 3H), 2.04–2.31 (m, 4H), 1.23 (t, *J* = 7.20 Hz, 3H), 1.19 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 173.3, 138.1, 137.5, 129.2, 127.5, 60.6,

58.4, 55.5, 33.3, 30.7, 22.6, 21.1, 14.2. HRMS (EI): calcd for $\rm C_{17}H_{28}NO_3S~[M+H],$ 326.1790; found, 326.1788.

(*R*)-Ethyl 4-((*R*)-1,1-Dimethylethylsulfinamido)pentanoate ent-5f. Following the general procedure (GP1), the reaction of 5methylfuran-2(3*H*)-one 3f (198 mg, 2.0 mmol) with (*S*)-tert-butanesulfinamide (268 mg, 2.2 mmol) gave 470 mg (95%) of (*R*)-ethyl 4-((*R*)-1,1-dimethylethylsulfinamido)pentanoate ent-5f as a viscous liquid. ¹H NMR (401 MHz, CDCl₃): δ 4.07–4.18 (m, 2H), 3.31–3.43 (m, 1H), 3.08 (d, *J* = 7.83 Hz, 1H), 2.39 (t, *J* = 7.58 Hz, 2H), 1.72–1.86 (m, 2H), 1.31 (d, *J* = 6.57 Hz, 3H), 1.26 (t, *J* = 7.07 Hz, 3H), 1.21 (s, 98 H). ¹³C NMR (125 MHz, CDCl₃): δ 173.3, 60.3, 55.7, 52.4, 32.8, 30.7, 23.3, 22.5, 14.1. HRMS (EI): calcd for C₁₁H₂₄NO₃S [M + H], 250.1477; found, 250.1479.

General Procedure (GP2) for the Hydrolysis of Ester 5. To a round-bottomed flask containing LiOH (120 mg, 10 mmol, 10 equiv) was added distilled H_2O (7.5.0 mL), and the resulting solution was cooled to 0 °C. A solution of 5 (1.0 mmol, 1.0 equiv) in THF (2.5 mL) was added to the reaction flask. The resulting solution was stirred at 0 °C for 1 h. The reaction mixture was then concentrated to remove the THF, and the remaining material was diluted with distilled H_2O (5 mL) and EtOAc (10 mL). The reaction mixture was neutralized with a saturated NaHSO₄ solution to pH ~2. The organic layers were separated, washed with water (2 × 5 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The product 11 was isolated, with no further purification, as a white solid.

(*R*)-4-((*S*)-1,1-Dimethylethylsulfinamido)-4-(4-methoxyphenyl)butanoic Acid 11a. Following the general procedure (GP2), hydrolysis of (*R*)-ethyl 4-((*S*)-1,1-dimethylethylsulfinamido)-4-(4-methoxyphenyl)butanoate 5a (341 mg, 1.0 mmol) with LiOH (120 mg, 5 mmol) produced compound (*R*)-4-((*S*)-1,1-dimethylethylsulfinamido)-4-(4-methoxyphenyl)butanoic acid 11a (292 mg, 93%) as a white solid. Mp: 125–128 °C. ¹H NMR (501 MHz, CDCl₃): δ 10.45 (br s, 1H), 7.24 (d, *J* = 8.51 Hz, 2H), 6.87 (d, *J* = 8.83 Hz, 2H), 4.81 (s, 1H), 4.39 (t, *J* = 6.46 Hz, 1H), 3.80 (s, 3H), 2.14–2.34 (m, 3H), 1.91–2.05 (m, 1H), 1.20 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 176.9, 159.2, 132.9, 128.9, 114.0, 58.4, 55.9, 55.2, 33.4, 30.7, 22.7. HRMS (EI): calcd for C₁₅H₂₂NO₄S [M – H], 312.1270; found, 312.1274.

(S)-4-((S)-1,1-Dimethylethylsulfinamido)pentanoic Acid 11f. Following the general procedure (GP2), hydrolysis of (S)-ethyl 4-((S)-1,1-dimethylethylsulfinamido)pentanoate 5a (250 mg, 1.0 mmol) with LiOH (120 mg, 5 mmol) produced compound (S)-4-((S)-1,1-dimethylethylsulfinamido)pentanoic acid 11f (208 mg, 95%) as a viscous liquid. ¹H NMR (501 MHz, CDCl₃): δ 10.52 (br s, 1H), 3.67 (d, *J* = 7.57 Hz, 1H), 3.29–3.50 (m, 1H), 2.29–2.44 (m, 2H), 1.66–1.88 (m, 2H), 1.30 (d, *J* = 6.62 Hz, 3H), 1.22 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 177.2, 56.2, 52.7, 32.7, 30.6, 22.9, 22.7. HRMS (EI): calcd for C₉H₁₈NO₃S [M – H], 220.1007; found 220.1010.

General Procedure (GP3) for Synthesis of γ -Lactam 9. To a solution of 5 (1 mmol) in THF (5 mL) was added a 1 N HCl solution (4 mL). After the mixture was stirred at room temperature for 12 h, it was diluted with ethyl acetate (20 mL) and water (10 mL) and neutralized with saturated K₂CO₃ solutions to pH ~12. The organic phase was separated and washed with water (2 × 10 mL). The organic layer contracted to dryness to yield pure γ -lactam 9.

(*R*)-5-(4-Methoxyphenyl)pyrrolidin-2-one 9a. Following the general procedure (GP3), the reaction of 5a (340 mg, 1.0 mmol) with a 1 N HCl solution (4 mL) gives the (*R*)-5-(4-methoxyphenyl)pyrrolidin-2-one 9a (185 mg, 96%) as a white solid. Mp: 100–102 °C. ¹H NMR (501 MHz, CDCl₃): δ 7.21 (d, *J* = 8.83 Hz, 2H), 6.88 (d, *J* = 8.83 Hz, 2H), 6.67 (br s, 1H), 4.69 (t, *J* = 7.09 Hz, 1H), 3.79 (s, 3H), 2.29–2.63 (m, 3H), 1.78–2.02 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 178.5, 159.2, 134.5, 126.3, 114.2, 57.6, 55.3, 31.4, 30.4. HRMS (EI): calcd for C₁₁H₁₄NO₂ [M + H], 192.1025; found, 192.1023.

(S)-5-Methylpyrrolidin-2-one 9f. Following the general procedure (GP3), the reaction of 5a (250 mg, 1.0 mmol) with a 1 N HCl solution (4 mL) gives the (S)-5-methylpyrrolidin-2-one 9f (93 mg, 94%) as a viscous liquid. ¹H NMR (501 MHz, CDCl₃): δ 7.62 (br s, 1H), 3.75–3.98 (m, 1H), 2.33–2.54 (m, 2H), 2.19–2.34 (m, 1H), 1.55–1.75 (m, 1H), 1.26 (d, *J* = 6.31 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ

178.8, 50.9, 30.6, 28.9, 21.9. HRMS (EI): calcd for $C_5H_{10}NO [M + H]$, 100.0762; found, 100.0758.

General Procedure (GP4) for Synthesis of Amine 10. To a solution of **5** (1 mmol) in MeOH (5 mL) was added 1 N HCl solution (in dioxane, 3 mL). After the mixture was stirred at room temperature for 1 h, it was concentrated to dryness and diethyl ether (20 mL) was added. The solid was collected by filtration, washed with diethyl ether (20 mL), and dried at room temperature for 2 h under vacuum to yield a pure hydrochloride salt of **10**.

(*R*)-4-Ethoxy-1-(4-methoxyphenyl)-4-oxobutan-1-aminium Chloride 10a. Following the general procedure (GP4), the reaction of Sa (340 mg, 1.0 mmol) with a 1 N HCl solution (in dioxane, 3 mL) gives the (*R*)-4-ethoxy-1-(4-methoxyphenyl)-4-oxobutan-1-aminium chloride 10a (242 mg, 89%) as a white solid. Mp: >200 °C dec. ¹H NMR (501 MHz, CDCl₃): δ 7.16–7.25 (m, 2H), 6.76–6.90 (m, 2H), 4.10 (q, *J* = 7.25 Hz, 2H), 3.88 (t, *J* = 6.94 Hz, 1H), 3.79 (s, 3H), 2.19–2.34 (m, 2H), 1.88–2.07 (m, 2H), 1.23 (t, *J* = 7.25 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 173.5, 158.7, 137.7, 127.3, 113.3, 60.2, 55.2, 54.9, 34.4, 31.3, 14.2. HRMS (EI): calcd for C₁₃H₂₀NO₃ [M + H], 238.1443; found, 238.1445.

(S)-5-Ethoxy-5-oxopentan-2-aminium Chloride 10f. Following the general procedure (GP4), the reaction of 5a (250 mg, 1.0 mmol) with a 1 N HCl solution (in dioxane, 3 mL) gives the (S)-5-ethoxy-5oxopentan-2-aminium chloride 10f (175 mg, 92%) as a white solid. Mp: >200 °C dec. ¹H NMR (501 MHz, CDCl₃): δ 8.34 (br s, 3H), 4.13 (q, J = 6.94 Hz, 2H), 3.42–3.59 (m, 1H), 2.41–2.63 (m, 2H), 2.18 (dd, J =13.87, 6.94 Hz, 1H), 1.87–2.08 (m, 1H), 1.45 (d, J = 6.31 Hz, 3H), 1.25 (t, J = 7.25 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 172.5, 60.7, 51.8, 47.8, 30.3, 29.6, 18.4, 14.1. HRMS (EI): calcd for C₇H₁₆NO₂ [M + H], 146.1181; found, 146.1184.

General Procedure (GP5) for the Amino Alcohol 12. To a solution of 5 (1 mmol) in MeOH (5 mL) was added NaBH₄ (10.0 mmol, 10 equiv). After the mixture was stirred at room temperature for 1 h, it was quenched with water (20 mL) and extracted with ethyl acetate (2×20 mL). The combined organic layers were washed with water (20 mL) and concentrated to dryness to obtain pure amino alcohol 12.

(*S*)-*N*-(*R*)-4-(Hydroxy-1-(naphthalen-2-yl)butyl)-2-methylpropane-2-sulfinamide 12c. Following the general procedure (GP5), the reaction of Sc (340 mg, 1.0 mmol) with NaBH₄ (380 mg, 10.0 mmol) gives the (*S*)-*N*-(*R*)-4-(hydroxy-1-(naphthalen-2-yl)butyl)-2-methylpropane-2-sulfinamide (311 mg, 98%) as a white solid. Mp: 110–111 °C. ¹H NMR (401 MHz, CDCl₃): δ 7.70–7.86 (m, 4H), 7.37–7.51 (m, 3H), 4.48–4.62 (m, 1H), 4.10 (br s, 1H), 3.46–3.72 (m, 2H), 3.35 (br s, 1H), 1.87–2.09 (m, 2H), 1.40–1.66 (m, 2H), 1.15 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 139.5, 133.2, 132.9, 128.4, 127.6, 126.8, 126.2, 125.0, 62.0, 59.5, 55.6, 35.2, 29.2, 22.6. HRMS (EI): calcd for C₁₈H₂₆NO₂S [M + H], 320.1684; found, 320.1682.

(*S*)-*N*-(*R*)-4-(Hydroxy-1-(thiophen-2-yl)butyl)-2-methylpropane-2-sulfinamide 12e. Following the general procedure (GP5), the reaction of 5e (318 mg, 1.0 mmol) with NaBH₄ (380 mg, 10.0 mmol) gives the (*S*)-*N*-(*R*)-4-(hydroxy-1-(thiophen-2-yl)butyl)-2-methylpropane-2-sulfinamide 12e (268 mg, 97%) as a white solid. Mp: 89–91 °C. ¹H NMR (401 MHz, CDCl₃): δ 7.27 (dd, *J* = 4.55, 2.27 Hz, 1H), 7.15 (s, 1H), 7.01 (d, *J* = 4.80 Hz, 1H), 4.51 (d, *J* = 2.27 Hz, 1H), 4.02 (br s, 1H), 3.51–3.78 (m, 3H), 1.93 (q, *J* = 7.07 Hz, 2H), 1.49–1.63 (m, 2H), 1.18 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 143.4, 126.2, 126.0, 122.1, 61.8, 55.6, 55.3, 34.6, 28.9, 22.6. HRMS (EI): calcd for C₁₂H₂₂NO₂S₂ [M + H], 276.1092; found, 276.1090.

ASSOCIATED CONTENT

S Supporting Information

Copies of NMR spectra for all the compounds and X-ray crystallographic data for compound *ent*-**5d**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*reddylrajender@yahoo.com.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Dr. Guanmin Wu from Novartis Pharmaceutical Corporation for helpful suggestions.

DEDICATION

Dedicated to Dr. J. S. Yadav (Director, IICT, India) on the occasion of his 62nd birthday.

REFERENCES

For a review of γ-peptides, see: Seebach, D.; Beck, A. K.; Bierbaum, D. J. Chem. Biodiversity 2004, 1, 1111.

(2) (a) Hagihara, M.; Anthony, N. J.; Stout, T. J.; Clardy, J.; Schreiber, S. L. J. Am. Chem. Soc. 1992, 114, 6568. (b) Hanessian, S.; Luo, X. H.; Schaum, R.; Michnick, S. J. Am. Chem. Soc. 1998, 120, 8569. (c) Woll, M. G.; Lai, J. R.; Guzei, I. A.; Taylor, S. J. C.; Smith, M. E. B.; Gellman, S. H. J. Am. Chem. Soc. 2001, 123, 11077. (d) Seebach, D.; Brenner, M.; Rueping, M.; Schweizer, B.; Jaun, B. Chem. Commun. 2001, 207. (e) Seebach, D.; Brenner, M.; Rueping, M.; Jaun, B. Chem.—Eur. J. 2002, 8, 573. (f) Seebach, D.; Schaeffer, L.; Brenner, M.; Hoyer, D. Angew. Chem., Int. Ed. 2003, 42, 776. (g) Farrera-Sinfreu, J.; Zaccaro, L.; Vidal, D.; Salvatella, X.; Giralt, E.; Pons, M.; Albericio, F.; Royo, M. J. Am. Chem. Soc. 2004, 126, 6048. (h) Arvidsson, P. I.; Ryder, N. S.; Weiss, H. M.; Hook, D. F.; Escalante, J.; Seebach, D. Chem. Biodiversity 2005, 2, 401. (i) Khurram, M.; Quresh, N.; Smith, M. D. Chem. Commun. 2006, 5006.

(3) (a) Robinson, R. P.; Laird, E. R.; Blake, F. J.; Bordner, J.; Donahue, K. M.; Lopresti-Morrow, K. K.; Mitchell, P. G.; Reese, M. R.; Reeves, L. M.; Stam, E. J.; Yocum, S. A. J. Med. Chem. 2000, 43, 2293. (b) Craig, D.; Hyland, C. J. T.; Ward, S. E. Chem. Commun. 2005, 3439. (c) Hu, J. D. WO 2009/131814 A2, 2009. (d) Ren, H.; Liu, R.; Chen, L.; Zhu, T. J.; Zhu, W. M.; Gu, Q. Q. Arch. Pharmacal Res. 2010, 33, 499. (e) Christensen, M. K.; Blæhr, L. K. A. WO 03/059921 A1, 2003. (f) Elliott, R. L.; Ryther, K. B.; Anderson, D. J.; Piattoni-Kaplan, M.; Kuntzweiler, T. A.; Donnelly-Roberts, D.; Arneric, S. P.; Holladay, S. P. Bioorg. Med. Chem. Lett. 1997, 7, 2703. (g) Corbett, J. W.; Dirico, K.; Song, W.; Boscoe, B. P.; Doran, S. D.; Boyer, D.; Qiu, K.; Ammirati, M.; Vanvolkenburg, M. A.; MCPherson, R. K.; Parker, J. C.; Cox, E. D. Bioorg. Med. Chem. Lett. 2007, 17, 6707. (h) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.

(4) (a) Johannesen, S. A.; Albu, A.; Hazell, R. G.; Skrydstrup, T. Chem. Commun. 2004, 1962. (b) Cheemala, M. N.; Knochel, P. Org. Lett. 2007, 9, 3089. (c) Burgos, P. O.; Fernaandez, I.; Iglesias, M. J.; Garcia-Granda, S.; Ortiz, F. L. Org. Lett. 2008, 10, 537. (d) Malkov, A. M.; Vranková, K.; Stončius, S.; Kočovský, P. J. Org. Chem. 2009, 74, 5839. (e) Xue, Z. Y.; Liu, L. X.; Jiang, Y.; Yuan, W. C.; Zhang, X. M. Eur. J. Org. Chem. 2012, 251. (f) Cividino, P.; Py, S.; Delair, P.; Greene, A. E. J. Org. Chem. 2007, 72, 485.

(5) For reviews, see: (a) Ellman, J. A.; Owens, T. D.; Tang, T. P. Ntert-Butanesulfinyl Imines: Versatile Intermediates for the Asymmetric Synthesis of Amines. Acc. Chem. Res. 2002, 35, 984. (b) Ellman, J. A. Application of tert-Butanesulfinamide in the Asymmetric Synthesis of Amines. Pure Appl. Chem. 2003, 75, 39. (c) Senanayake, C. H.; Krishnamurthy, D.; Lu, Z.-H.; Han, Z.; Gallou, I. Enantiopure Sulfoxides and Sulfinamides: Recent Developments in Their Stereoselective Synthesis and Application to Asymmetric Synthesis. Aldrichimica Acta 2005, 38, 93. (d) Daniel, M.; Stockman, R. A. Chiral Non-racemic Sulfinimines: Versatile Reagents for Asymmetric Synthesis. Tetrahedron 2006, 62, 8868. (e) Lin, G.-Q.; Xu, M.-H.; Zhong, Y.-W.; Sun, X.-W. An Advance on Exploring N-tert-Butanesulfinyl Imines in Asymmetric Synthesis of Chiral Amines. Acc. Chem. Res. 2008, 41, 831. (f) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Synthesis and Application of tert-Butanesulfinamide. Chem. Rev. 2010, 110, 3600.

(6) (a) Reddy, L. R.; Hu, B.; Prashad, M.; Pasad, K. Org. Lett. 2008, 10, 3109. (b) Reddy, L. R.; Das, S. G.; Liu, Y.; Prashad, M. J. Org. Chem.

2010, 75, 2236. (c) Reddy, L. R.; Gupta, A. P.; Liu, Y. J. Org. Chem. **2011**, 76, 3409. (d) Reddy, L. R.; Gupta, A. P.; Villhauer, E.; Liu, Y. J. Org. Chem. **2012**, 77, 1095. (e) Reddy, L. R.; Prashad, M. Chem. Commun. **2010**, 46, 222. (f) Beenen, M. A.; Weix, D. J.; Ellmam, J. A. J. Am. Chem. Soc. **2006**, 128, 6304.

(7) Reddy, L. R.; Gupta, A. P.; Yugang, Y. J. Org. Chem. 2011, 76, 3409.
(8) Titanium(IV) ethoxide (purum) was purchased from Aldrich, and it contains ~3% tetraisopropyl orthotitanate.

(9) Borg, G.; Cogan, D. A.; Ellman, J. A. Tetrahedron Lett. 1999, 40, 6709.